123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- /**
- * AUTO-GENERATED FILE. DO NOT MODIFY.
- */
- /*
- * Licensed to the Apache Software Foundation (ASF) under one
- * or more contributor license agreements. See the NOTICE file
- * distributed with this work for additional information
- * regarding copyright ownership. The ASF licenses this file
- * to you under the Apache License, Version 2.0 (the
- * "License"); you may not use this file except in compliance
- * with the License. You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing,
- * software distributed under the License is distributed on an
- * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
- * KIND, either express or implied. See the License for the
- * specific language governing permissions and limitations
- * under the License.
- */
- import { assert, isArray, eqNaN, isFunction } from 'zrender/lib/core/util.js';
- import { parsePercent } from 'zrender/lib/contain/text.js';
- var ScaleRawExtentInfo = /** @class */function () {
- function ScaleRawExtentInfo(scale, model,
- // Usually: data extent from all series on this axis.
- originalExtent) {
- this._prepareParams(scale, model, originalExtent);
- }
- /**
- * Parameters depending on outside (like model, user callback)
- * are prepared and fixed here.
- */
- ScaleRawExtentInfo.prototype._prepareParams = function (scale, model,
- // Usually: data extent from all series on this axis.
- dataExtent) {
- if (dataExtent[1] < dataExtent[0]) {
- dataExtent = [NaN, NaN];
- }
- this._dataMin = dataExtent[0];
- this._dataMax = dataExtent[1];
- var isOrdinal = this._isOrdinal = scale.type === 'ordinal';
- this._needCrossZero = scale.type === 'interval' && model.getNeedCrossZero && model.getNeedCrossZero();
- var axisMinValue = model.get('min', true);
- if (axisMinValue == null) {
- axisMinValue = model.get('startValue', true);
- }
- var modelMinRaw = this._modelMinRaw = axisMinValue;
- if (isFunction(modelMinRaw)) {
- // This callback always provides users the full data extent (before data is filtered).
- this._modelMinNum = parseAxisModelMinMax(scale, modelMinRaw({
- min: dataExtent[0],
- max: dataExtent[1]
- }));
- } else if (modelMinRaw !== 'dataMin') {
- this._modelMinNum = parseAxisModelMinMax(scale, modelMinRaw);
- }
- var modelMaxRaw = this._modelMaxRaw = model.get('max', true);
- if (isFunction(modelMaxRaw)) {
- // This callback always provides users the full data extent (before data is filtered).
- this._modelMaxNum = parseAxisModelMinMax(scale, modelMaxRaw({
- min: dataExtent[0],
- max: dataExtent[1]
- }));
- } else if (modelMaxRaw !== 'dataMax') {
- this._modelMaxNum = parseAxisModelMinMax(scale, modelMaxRaw);
- }
- if (isOrdinal) {
- // FIXME: there is a flaw here: if there is no "block" data processor like `dataZoom`,
- // and progressive rendering is using, here the category result might just only contain
- // the processed chunk rather than the entire result.
- this._axisDataLen = model.getCategories().length;
- } else {
- var boundaryGap = model.get('boundaryGap');
- var boundaryGapArr = isArray(boundaryGap) ? boundaryGap : [boundaryGap || 0, boundaryGap || 0];
- if (typeof boundaryGapArr[0] === 'boolean' || typeof boundaryGapArr[1] === 'boolean') {
- if (process.env.NODE_ENV !== 'production') {
- console.warn('Boolean type for boundaryGap is only ' + 'allowed for ordinal axis. Please use string in ' + 'percentage instead, e.g., "20%". Currently, ' + 'boundaryGap is set to be 0.');
- }
- this._boundaryGapInner = [0, 0];
- } else {
- this._boundaryGapInner = [parsePercent(boundaryGapArr[0], 1), parsePercent(boundaryGapArr[1], 1)];
- }
- }
- };
- /**
- * Calculate extent by prepared parameters.
- * This method has no external dependency and can be called duplicatedly,
- * getting the same result.
- * If parameters changed, should call this method to recalcuate.
- */
- ScaleRawExtentInfo.prototype.calculate = function () {
- // Notice: When min/max is not set (that is, when there are null/undefined,
- // which is the most common case), these cases should be ensured:
- // (1) For 'ordinal', show all axis.data.
- // (2) For others:
- // + `boundaryGap` is applied (if min/max set, boundaryGap is
- // disabled).
- // + If `needCrossZero`, min/max should be zero, otherwise, min/max should
- // be the result that originalExtent enlarged by boundaryGap.
- // (3) If no data, it should be ensured that `scale.setBlank` is set.
- var isOrdinal = this._isOrdinal;
- var dataMin = this._dataMin;
- var dataMax = this._dataMax;
- var axisDataLen = this._axisDataLen;
- var boundaryGapInner = this._boundaryGapInner;
- var span = !isOrdinal ? dataMax - dataMin || Math.abs(dataMin) : null;
- // Currently if a `'value'` axis model min is specified as 'dataMin'/'dataMax',
- // `boundaryGap` will not be used. It's the different from specifying as `null`/`undefined`.
- var min = this._modelMinRaw === 'dataMin' ? dataMin : this._modelMinNum;
- var max = this._modelMaxRaw === 'dataMax' ? dataMax : this._modelMaxNum;
- // If `_modelMinNum`/`_modelMaxNum` is `null`/`undefined`, should not be fixed.
- var minFixed = min != null;
- var maxFixed = max != null;
- if (min == null) {
- min = isOrdinal ? axisDataLen ? 0 : NaN : dataMin - boundaryGapInner[0] * span;
- }
- if (max == null) {
- max = isOrdinal ? axisDataLen ? axisDataLen - 1 : NaN : dataMax + boundaryGapInner[1] * span;
- }
- (min == null || !isFinite(min)) && (min = NaN);
- (max == null || !isFinite(max)) && (max = NaN);
- var isBlank = eqNaN(min) || eqNaN(max) || isOrdinal && !axisDataLen;
- // If data extent modified, need to recalculated to ensure cross zero.
- if (this._needCrossZero) {
- // Axis is over zero and min is not set
- if (min > 0 && max > 0 && !minFixed) {
- min = 0;
- // minFixed = true;
- }
- // Axis is under zero and max is not set
- if (min < 0 && max < 0 && !maxFixed) {
- max = 0;
- // maxFixed = true;
- }
- // PENDING:
- // When `needCrossZero` and all data is positive/negative, should it be ensured
- // that the results processed by boundaryGap are positive/negative?
- // If so, here `minFixed`/`maxFixed` need to be set.
- }
- var determinedMin = this._determinedMin;
- var determinedMax = this._determinedMax;
- if (determinedMin != null) {
- min = determinedMin;
- minFixed = true;
- }
- if (determinedMax != null) {
- max = determinedMax;
- maxFixed = true;
- }
- // Ensure min/max be finite number or NaN here. (not to be null/undefined)
- // `NaN` means min/max axis is blank.
- return {
- min: min,
- max: max,
- minFixed: minFixed,
- maxFixed: maxFixed,
- isBlank: isBlank
- };
- };
- ScaleRawExtentInfo.prototype.modifyDataMinMax = function (minMaxName, val) {
- if (process.env.NODE_ENV !== 'production') {
- assert(!this.frozen);
- }
- this[DATA_MIN_MAX_ATTR[minMaxName]] = val;
- };
- ScaleRawExtentInfo.prototype.setDeterminedMinMax = function (minMaxName, val) {
- var attr = DETERMINED_MIN_MAX_ATTR[minMaxName];
- if (process.env.NODE_ENV !== 'production') {
- assert(!this.frozen
- // Earse them usually means logic flaw.
- && this[attr] == null);
- }
- this[attr] = val;
- };
- ScaleRawExtentInfo.prototype.freeze = function () {
- // @ts-ignore
- this.frozen = true;
- };
- return ScaleRawExtentInfo;
- }();
- export { ScaleRawExtentInfo };
- var DETERMINED_MIN_MAX_ATTR = {
- min: '_determinedMin',
- max: '_determinedMax'
- };
- var DATA_MIN_MAX_ATTR = {
- min: '_dataMin',
- max: '_dataMax'
- };
- /**
- * Get scale min max and related info only depends on model settings.
- * This method can be called after coordinate system created.
- * For example, in data processing stage.
- *
- * Scale extent info probably be required multiple times during a workflow.
- * For example:
- * (1) `dataZoom` depends it to get the axis extent in "100%" state.
- * (2) `processor/extentCalculator` depends it to make sure whether axis extent is specified.
- * (3) `coordSys.update` use it to finally decide the scale extent.
- * But the callback of `min`/`max` should not be called multiple times.
- * The code below should not be implemented repeatedly either.
- * So we cache the result in the scale instance, which will be recreated at the beginning
- * of the workflow (because `scale` instance will be recreated each round of the workflow).
- */
- export function ensureScaleRawExtentInfo(scale, model,
- // Usually: data extent from all series on this axis.
- originalExtent) {
- // Do not permit to recreate.
- var rawExtentInfo = scale.rawExtentInfo;
- if (rawExtentInfo) {
- return rawExtentInfo;
- }
- rawExtentInfo = new ScaleRawExtentInfo(scale, model, originalExtent);
- // @ts-ignore
- scale.rawExtentInfo = rawExtentInfo;
- return rawExtentInfo;
- }
- export function parseAxisModelMinMax(scale, minMax) {
- return minMax == null ? null : eqNaN(minMax) ? NaN : scale.parse(minMax);
- }
|