123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108 |
- /**
- * The algoritm is learnt from
- * https://franklinta.com/2014/09/08/computing-css-matrix3d-transforms/
- * And we made some optimization for matrix inversion.
- * Other similar approaches:
- * "cv::getPerspectiveTransform", "Direct Linear Transformation".
- */
- const LN2 = Math.log(2);
- function determinant(
- rows: number[][],
- rank: number,
- rowStart: number,
- rowMask: number,
- colMask: number,
- detCache: {[key: string]: number}
- ) {
- const cacheKey = rowMask + '-' + colMask;
- const fullRank = rows.length;
- if (detCache.hasOwnProperty(cacheKey)) {
- return detCache[cacheKey];
- }
- if (rank === 1) {
- // In this case the colMask must be like: `11101111`. We can find the place of `0`.
- const colStart = Math.round(Math.log(((1 << fullRank) - 1) & ~colMask) / LN2);
- return rows[rowStart][colStart];
- }
- const subRowMask = rowMask | (1 << rowStart);
- let subRowStart = rowStart + 1;
- while (rowMask & (1 << subRowStart)) {
- subRowStart++;
- }
- let sum = 0;
- for (let j = 0, colLocalIdx = 0; j < fullRank; j++) {
- const colTag = 1 << j;
- if (!(colTag & colMask)) {
- sum += (colLocalIdx % 2 ? -1 : 1) * rows[rowStart][j]
- // det(subMatrix(0, j))
- * determinant(rows, rank - 1, subRowStart, subRowMask, colMask | colTag, detCache);
- colLocalIdx++;
- }
- }
- detCache[cacheKey] = sum;
- return sum;
- }
- /**
- * Usage:
- * ```js
- * const transformer = buildTransformer(
- * [10, 44, 100, 44, 100, 300, 10, 300],
- * [50, 54, 130, 14, 140, 330, 14, 220]
- * );
- * const out = [];
- * transformer && transformer([11, 33], out);
- * ```
- *
- * Notice: `buildTransformer` may take more than 10ms in some Android device.
- *
- * @param src source four points, [x0, y0, x1, y1, x2, y2, x3, y3]
- * @param dest destination four points, [x0, y0, x1, y1, x2, y2, x3, y3]
- * @return transformer If fail, return null/undefined.
- */
- export function buildTransformer(src: number[], dest: number[]) {
- const mA = [
- [src[0], src[1], 1, 0, 0, 0, -dest[0] * src[0], -dest[0] * src[1]],
- [0, 0, 0, src[0], src[1], 1, -dest[1] * src[0], -dest[1] * src[1]],
- [src[2], src[3], 1, 0, 0, 0, -dest[2] * src[2], -dest[2] * src[3]],
- [0, 0, 0, src[2], src[3], 1, -dest[3] * src[2], -dest[3] * src[3]],
- [src[4], src[5], 1, 0, 0, 0, -dest[4] * src[4], -dest[4] * src[5]],
- [0, 0, 0, src[4], src[5], 1, -dest[5] * src[4], -dest[5] * src[5]],
- [src[6], src[7], 1, 0, 0, 0, -dest[6] * src[6], -dest[6] * src[7]],
- [0, 0, 0, src[6], src[7], 1, -dest[7] * src[6], -dest[7] * src[7]]
- ];
- const detCache = {};
- const det = determinant(mA, 8, 0, 0, 0, detCache);
- if (det === 0) {
- // can not make transformer when and only when
- // any three of the markers are collinear.
- return;
- }
- // `invert(mA) * dest`, that is, `adj(mA) / det * dest`.
- const vh: number[] = [];
- for (let i = 0; i < 8; i++) {
- for (let j = 0; j < 8; j++) {
- vh[j] == null && (vh[j] = 0);
- vh[j] += ((i + j) % 2 ? -1 : 1)
- // det(subMatrix(i, j))
- * determinant(mA, 7, i === 0 ? 1 : 0, 1 << i, 1 << j, detCache)
- / det * dest[i];
- }
- }
- return function (out: number[], srcPointX: number, srcPointY: number) {
- const pk = srcPointX * vh[6] + srcPointY * vh[7] + 1;
- out[0] = (srcPointX * vh[0] + srcPointY * vh[1] + vh[2]) / pk;
- out[1] = (srcPointX * vh[3] + srcPointY * vh[4] + vh[5]) / pk;
- };
- }
|